

Argonne National Laboratory

Marianne M. Mintz

Hydrogen, Fuel Cells, and Infrastructure Technologies
Program
Systems Analysis Workshop
July 28-29, 2004
Washington, D.C.

Center for Transportation Research
Argonne National Laboratory

ANL's Charter

- Systems analysis in Energy Systems (CTR), Decision and Information Sciences
- History of working in partnership with industry
- Analytical work has spanned the range of:
 - ✓ Energy Supply globally and by region
 - ✓ Demand for transportation fuels globally and region
 - ✓ Assessment of vehicle technologies and fuels
 - Economic analysis and interaction between energy prices and macro activity
 - ✓ Life-cycle analyses of energy use and environmental impacts associated with transportation technologies and fuels
 - ✓ Evaluate policies to accelerate transitions to new fuels and vehicles

Funding sources

- ✓ Office of Hydrogen, Fuel Cells, and Infrastructure
- ✓ Office of FreedomCAR and Vehicle Technologies
- ✓ Office of Budget and Policy Analysis/EERE
- ✓ Office of Fossil Energy
- ✓ Office of Nuclear Energy, Science, and Technology
- ✓ Office of Science
- ✓ DHS, DOD, other military
- ✓ Other government agencies (EPA, State of Illinois)
- ✓ Private sector (GM/GAPC, GM/EMD, ADM, etc.)

ANL Takes a Comprehensive Approach to H2 Analysis

ANL's Analytical Efforts Span the Range Interest

- Energy Resources: from petroleum, fossil, nuclear, renewable sources – globally and by region
- Technology Feasibility and Cost Analysis: fuel cell and vehicle efficiency and performance modeling, vehicle cost modeling, resource feedstock availability and cost, hydrogen distribution options
- Environmental Analysis: Well-to-Wheels Greenhouse Gas and criteria emissions, local and regional impacts of alternatively—fueled vehicles
- Delivery Analysis: GIS analysis, infrastructure requirements and options
- Infrastructure Development and Financial Analysis: industrydefined agent-based complex adaptive systems
- Energy Market Analysis: hydrogen demand estimation, market penetration under different technical and economic assumptions, fleet turn over, agent-based predictive models of market behavior ₄

ANL's Skill Set - People

- Center for Transportation Research:
 - ✓ Life Cycle Analyses (GREET) Dr. Michael Wang and 4 staff
 - ✓ Infrastructure, Cost, and Financing Marianne Mintz and 6 staff
 - ✓ Vehicle Modeling (PSAT) Aymeric Rousseau and 3 staff
 - ✓ Market Potential and Penetration Dr. Dan Santini and 3 staff
 - ✓ Fueling Infrastructure Dr. David Livengood and 1 staff
- Decision Sciences Dr. Richard Cirillo and staff
- Geographic Information Systems Julie Muzzarelli and 11 staff
- Infrastructure Assurance Dr. Ron Whitfield and staff
- Electro-Chemical Engineering Dr. Jim Miller and staff
- H2 and GHG Engineering Richard Doctor and 2 staff
- Basic Science and Materials Dr. George Crabtree and staff
- Nuclear Engineering Dr. Mark Petri and 5 staff

Skill Set - Models that Explicitly Include H2

- H2A Delivery Scenario Generator
- GREET life-cycle model of greenhouse gases and criteria pollutant emissions
- VISION as explained by Phil Patterson
- CHAIN H2 infrastructure cost model
- PSAT, GC-TOOL ENG as explained by Lee Slezak
- Energy system models using agent-based and conventional modeling (ENPEP, EMCAS)
- AMIGA general equilibrium model of the US economy
- Resource Analysis modeling CTR and Nuclear groups
 These models will be described in the following slides

H2A Master Delivery Scenario Generator (linked to Delivery Components Workbook)

- Define configuration for each case and delivery mode.
- Calculate discounted cash flow across all components for each delivery scenario
- Calculate delivery component of hydrogen cost (\$/kg) for each case. Delivery components include:
 - Liquid hydrogen trucks
 - Compressed hydrogen gas trucks (tube trailers)
 - H2 compressors (single-stage)
 - H2 compressors (multi-stage)
 - Hydrogen pipelines
 - Liquefiers
 - LH2 storage tanks
 - Gaseous H2 storage cylinders
 - Compressed hydrogen gas terminals
 - Liquid hydrogen terminals
 - Gaseous H2 geologic storage

GREET Uses "Well-to-Wheels" (WTW) Analysis to Examine Fuels and Vehicles

The CHAIN Model Estimates "Well-to-Pump" Levelized Costs of Hydrogen Infrastructure

CHAIN Model Focuses on Gaseous H2 Production and Pipeline Distribution

Agent-Based Complex Adaptive Systems: Intuitively Appealing Method to Analyze Large Energy Systems

- Complex adaptive systems consist of numerous heterogeneous entities (players) that interact with each other and their environment often in nonlinear ways, adapt to change and evolve their behavior
- Agent-based modeling and simulation (ABMS) simulates the behaviors and interactions of large numbers of entities (agents) and studies the macro-scale consequences of those interactions

H₂/Energy Market Agents Consider Information on the Past, Present, and Future in their Decisions

- Agents make decisions using local and public information
- Agents develop price expectations by market segment or region
- Agents develop demand scenarios by market segment/region
- Agents consider actions of competitors
- Agents consider past performance in making their decisions

Agent-Based CAS Models Have Key Advantages

New insights into H₂ infrastructure development issues

- ✓ Better represent uncertainty and volatility
- ✓ Improved modeling of heterogeneity of market participants
- ✓ Better understanding of transition/inflection points and their causes and drivers

Platform for

- ✓ Testing different business models/strategies, policies/market rules
- ✓ Defining scenarios
- Examining co-evolution of H2 demand and supply infrastructure

ANL's Energy and Power Evaluation Program (ENPEP) is Used around the World for Energy Policy Analyses

- Overall energy sector development strategies and hydrogen transition analysis
- Natural gas market analysis
- Energy conservation, efficiency, demand-side management
- Economics of renewables
- Emissions projections for PM, SO₂, NO_x, etc.
- Emissions reduction strategies for PM, SO₂ and NO_x
- Emissions trading for SO₂ and CO₂ (cap and trade) and emissions taxes
- GHG mitigation studies and Kyoto Mechanisms

Argonne and NETL Have Teamed to Study Transition Paths to a Hydrogen Economy

Transition analysis includes both fuels and vehicles:

- ✓ Advanced vehicles with hybrid capability
- ✓ Increased refinery production of hydrogen to upgrade transportation fuel quality
- ✓ Analysis of coke and coal gasification at refineries for electricity production, process heat, and Fischer-Tropsch blendstocks
- ✓ Integrated economy & energy market simulations using Argonne's AMIGA model (a calculable general equilibrium model)

The Argonne/NETL study involves

- Improved refinery sector modeling, including upstream and downstream effects
- Refinery impacts of transition scenarios to hydrogen
- Refinery applications of coke and coal gasification technologies

The Hydrogen Economy – Resource Analysis

9.72 MJ/L

(2015 FreedomCAR Target)

150 M tons/yr

(light trucks and cars in 2040)

\$35/kW

(Internal Combustion Engine)

GIS Are Used to Plot Potential Hydrogen Infrastructure and Resources

To Validate Model Results, and to Identify Regional Opportunities and Data Gaps

ANL Skill Set - Capabilities Summary

TYPE OF ANALYSIS	RESIDENT CAPABILITY?	STUDIES SPECIFIC TO H ₂ ?	MODELS SPECIFIC TO H ₂ ?
Resource Analysis	<u>Yes</u>	<u>Yes</u>	<u>No – use</u> <u>comprehensive</u> <u>approach</u>
Techno-economic Analysis	<u>Yes</u>	<u>Yes</u>	No – use comparative approach
Environmental Analysis	<u>Yes</u>	<u>Yes</u>	No – use integrated, systematic approach
Delivery Analysis	<u>Yes</u>	<u>Yes</u>	<u>Yes</u>
Infrastructure Development Analysis	<u>Yes</u>	<u>Yes</u>	<u>Yes</u>
Energy Market Analysis	<u>Yes</u>	<u>Yes</u>	<u>No – use</u> <u>comprehensive</u> <u>approach</u>

ANL Hydrogen Studies

- List significant past studies that relate to hydrogen see separate handout
- Current/planned hydrogen studies:
 - ✓ H2A delivery infrastructure characterization and modeling (incl terminals, pipelines and geologic storage)
 - ✓ GREET expansion
 - ✓ Expansion and application of CHAIN model to SE US.
 - ✓ Support to BPA/Phil Patterson on market penetration, transition issues and regional analysis
 - Support to Vehicle Systems/Lee Slezak on improved vehicle simulations, and sub-system and vehicle validation
 - ✓ Internal work on agent-based modeling of H2 as a CAS
 - ✓ Hydrogen and oxygen market analysis for nuclear H2 production
 - ✓ GIS of potential H2 production, distribution facilities and ROW
 - ✓ ANL/NETL H2 transition scenario analysis
 - ✓ Fuel transitions analysis

ANL's View of Its H2 Analysis Future

- ANL plans to continue and modestly expand our analytic capabilities in the hydrogen area
- ANL will continue to forge strong partnerships with super major oil companies, hydrogen suppliers, universities and vehicle manufacturers to stay abreast of technology developments for H2 production, distribution, and utilization
- ANL will continue to build upon its reputation for objective analysis in support of our sponsors and customers

Backup Slides

Analysis Issues

 Open podium – what do you see as the major issues related to analysis of hydrogen systems?

Types of Hydrogen Analysis

Resource Analysis

-Where are the resources to make hydrogen and how much do they cost?

Technology Feasibility and Cost Analysis

- -Which technologies have the greatest potential for economic success?
- -Where should research efforts be focused?
- -What are the impacts of production volume?

Environmental Analysis

- -What are the environmental impacts of hydrogen technologies?
- -What steps can be taken to reduce impacts?

Delivery Analysis

-What are the most economic options for delivering hydrogen?

Infrastructure Development and Financial Analysis

- -What are the optimal scenarios for developing the hydrogen infrastructure?
- -What will a hydrogen infrastructure cost and what are the financial risks?

Energy Market Analysis

- -What are feasible hydrogen futures?
- -Which technologies are most likely to be a part of the hydrogen future, and what are the interactions between hydrogen and other energy carriers?
- -What are the scenarios for hydrogen use in transportation and stationary markets?
- -What are the impacts, costs, and financial risks?
- -What market penetration pathways are likely?

Production and Compression Are Key Steps for Gaseous H₂ Production

NG: natural gas

WTW GHG Emissions of Selected H2 Pathways Relative to Other Pathways

The GREET (<u>Greenhouse gases</u>, <u>Regulated</u> <u>Emissions</u>, and <u>Energy use in <u>Transportation</u>) <u>Model</u></u>

At Present, There Are > 1,200 GREET Registered Users Worldwide

The GREET model and its documents are available at http://greet.anl.gov

Hydrogen Pathways Modeled by the CHAIN Model for 2050 Study

Current Energy Systems Models Do Not Adequately Capture Underlying Complexities

- Existing simulation and optimization tools are limited in accounting for volatility and uncertainty prevalent in today's energy markets
 - ✓ Single decision-maker
 - ✓ Perfect foresight
 - ✓ Rational decision-making
 - Energy markets in equilibrium

 Straight-line projections ignore dynamics, uncertainties, potential for sudden shocks and disruptions, market imperfections, and emerging strategies by market

participants

- California power restructuring
- ✓ Recent crude oil & natural gas price volatility
- ✓ Rush to natural gas for power generation and recent collapse

Complexity Increases If H₂ Market is Modeled as Part of the Larger Energy Market

H₂/Energy Market Agents Make Decisions in a Complex and Multidimensional Environment

31

GCtool:

Fuel Cell Systems for Combined Heat and Power

- Mismatch between thermal and electric demands.
- Summer: High electric but low thermal demand
- Winter: Low electric but high thermal demand

Why heat pump with FC-CHP makes sense?

- Natural gas (NG) furnace, ¢2/kWh (\$0.60/therm)
- Heat pump (HP) with central power (CP), ¢8/kWh
- Heat pump coupled with fuel cell system (FCS)

Ambient		Thermal Efficiency			Relative Energy Cost			
Temp	HP	NG	CP+HP	FCS+HP	NG	CP+HP	FCS+HP	
°C	COP	%	%	%	\$	\$	\$	
10	3.6	80	119	171	100	86	47	
0	3.0	80	100	152	100	103	53	
-10	2.5	80	81	133	100	126	60	
-20	2.2	80	71	123	100	145	65	

GCtool_ENG and PSAT Fuel Economy of Hybrid Fuel Cell Vehicles

GCtool-PSAT model of load-following fuel cell vehicles

Results for mid-size family sedan

- 65-kW sustained at 100 mph
 120-kW peak for Z-60 in 10s
- FCS/ICE FE multiplier
 3.0 with 55 kW ESS vs. 2.5 with stand-alone FCS

GREET Examines Many Fuels and Fuel Pathways

Generic Geometry Compares Well with Observed NG Pipe Geometry for Similar-Sized Urbanized Area

Skill Set - Models

(add slides as necessary)

List models that explicitly include hydrogen

- Model name, dates in use, brief description
- Modeling methodology (e.g., linear programming, thermodynamic, etc.)
- Model platform (e.g., GAMS, ASPEN, etc.)
- Model limitations

List models that could be adapted to include hydrogen

- Model name, dates in use, brief description
- Modeling methodology (e.g., linear programming, thermodynamic, etc.)
- Model platform (e.g., GAMS, ASPEN, etc.)
- Model limitations

Gasoline Is Highly Dependent on Cost of Feedstock H₂ Cost Depends on Processing and Distribution

- Gasoline ~\$1.00-1.25/gal untaxed (\$28-40/bbl)
- H₂ >\$2.50/gge at high volume, much more at low volume
- Feedstock >60% for gasoline vs. 25-35% for NG-based H₂, much less for coal or nuclear
- Distribution <10% for gasoline vs. 20-25% for centralized H₂
- Production ~20% for gasoline vs. >60% for H₂ from nuclear, ~25% from NG.
- Levelized costs decline as infrastructure is "built out"

An Agent-Based Complex Adaptive Systems Approach Simulates Electricity Markets in the Midwest

Argonne – the First National Laboratory (1946)

- ANL has been doing systems analysis since 1971
- The Center for Transportation Research has over 25 years of experience providing high-quality analysis
- Significant history of working in partnership with industry
- Analytical work has spanned the range of:
 - ✓ Energy Supply globally and by region
 - ✓ Demand for transportation fuels globally and region
 - ✓ Assessment of vehicle technologies and fuels
 - Economic analysis and interaction between energy prices and macroeconomic activity
 - ✓ Life-cycle analyses of energy use and environmental impacts associated with transportation technologies and fuels
 - ✓ Evaluate policies to accelerate transitions to new fuels and vehicles
- Hydrogen has been a part of our analyses since 1993

Change in Fleet Share Takes Longer Than for New Vehicle Technologies to Be Adopted

